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Abstract

This study applies the method of multiple scales to obtain periodic solutions of a two-pulley belt system with clearance-

type nonlinearity. The purpose is to explain the published numerical results and clarify how design parameters affect the

system dynamics. The validity of the perturbation method for such strong nonlinearity is evaluated. The closed-form

frequency–response relation is determined at the first order, and an implicit expression is obtained for the second-order

approximation. The preload applied to the accessory determines the softening level of the nonlinearity. Larger preload

leads to less disengagement and less softening. For a considerable range of practical parameter values, the analytical

solutions well approximate the numerical results from harmonic balance.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A two-pulley system with clearance-type nonlinearity is illustrated in Fig. 1(a). An application of this system
has been presented in Ref. [1], where a discontinuous separation function models the alternate engagement
and disengagement of the pulley and accessory that functions through a one-way clutch. In Ref. [1], the
harmonic balance method with arc-length continuation is employed. Results show a rich picture of stable and
unstable periodic solutions when the system operates across a range of excitation frequencies. The present
work pursues analytical periodic solutions of this system in order to explain the numerical results and clarify
how the design parameters affect the dynamics.

Perturbation analysis to obtain periodic solutions of dynamic systems is most commonly applied to weak
nonlinearities. A few studies (e.g., Refs. [2–5]) deal with the validity of this technique for strongly nonlinear
systems, where the Lindstedt–Poincaré perturbation scheme is extended. For discontinuous nonlinearities with
piecewise linear or weakly nonlinear characteristics, piecewise analytical methods are generally employed [6–8]
where the perturbation technique is used for each linear or nonlinear piece.

The current study applies the method of multiple scales to the system with clearance-type nonlinearity
shown in Fig. 1(a) and evaluates the validity of the method for such strong nonlinearity. The discontinuous
function is expanded as a Fourier series, where the Fourier coefficients are evaluated for given excitation
amplitude. The closed-form frequency–response relation is determined at the first order. Periodic
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) A two-pulley belt system; (b) wrap-spring torque gðdyÞ in Eq. (1) and the smoothed function gsðdyÞ according to Eq. (3) for

different smoothing parameters e.
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approximations are determined up to the second order. The system is analyzed for a range of excitation
frequency with different preload values to characterize, where the power transmission is most efficient.

2. System model

The driving pulley in Fig. 1(a) is subject to periodic motion excitation specified as yc=s ¼ Am cosOT , and the
power is transmitted to the driven pulley through a belt modeled as springs with stiffness ~Kb=2. The driven
pulley and the accessory shaft are connected with a wrap spring of stiffness Kd that is disconnected when the
pulley and the shaft are disengaged. An accessory that acts as a load is rigidly connected to the shaft. The
system shows clearance-type nonlinearity when the pulley and shaft are alternately engaged and disengaged.
When the rotations of the wrap-spring ends are such that the pulley rotation yp exceeds the accessory shaft
rotation ya, the clutch is engaged. Alternately, when pulley rotation is less than accessory rotation, the wrap-
spring diameter decreases and the clutch disengages. Only engagement of the pulley and shaft allows power
transmission to the accessory. The wrap-spring torque is mathematically expressed in the dimensionless form
(Fig. 1(b))

gðdyÞ ¼
Kddy; dy40;

0; dyp0;

(
(1)

where dy ¼ yp � ya. The equations of motion for the pulley and accessory are

Jp 0

0 Ja

" #
€hþ C_hþ

Kb 0

0 0

� �
hþ

gðdyÞ

�gðdyÞ

 !
¼

M þ KbbAm cosOt

�M

� �
, (2)
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Table 1

Nomenclature and dimensionless parameter values for nominal case

rp ¼ 1 Radius of pulley

rc ¼ 1:422 Radius of driving pulley

Jp ¼ 1 Pulley inertia

Ja ¼ 1:620 Accessory inertia

z1; z2 ¼ 3% Modal damping ratios

Kb ¼ 2:620 Belt stiffness

Kd ¼ 27:66 Wrap spring stiffness

Am ¼ 0:001 Excitation amplitude

M ¼ 0:0127 Preload
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where h ¼ fyp yag
T, Kb ¼ ~Kbr2p, b ¼ rc=rp, and the dot denotes the time derivative d=dt. C is computed from

the modal damping matrix of the two-dof linear system with the pulley and shaft engaged. See Table 1 for the
nomenclature and dimensionless parameter values.

A hyperbolic tangent function

gsðdyÞ ¼ Kddyf g; f g ¼
1
2
½1þ tanhðedyÞ� (3)

is employed in Ref. [1] to approximate gðdyÞ for multiple methods. According to Ref. [1], use of e ¼ 10; 000 in
Eq. (3) ensures accuracy (Fig. 1(b)). In the following, the original discontinuous function (1) is considered and
the results are compared with those from harmonic balance using Eq. (3).

3. Perturbation analysis

The method of multiple scales is frequently used to obtain periodic approximations for systems with
continuous, weak nonlinearity [9]. This yields closed-form approximations for the frequency–response curve.
Furthermore, it can provide theoretical explanation for phenomena observed by numerical methods. Here, the
method of multiple scales is employed for the system in Eq. (2) but rewritten as

Jp 0

0 Ja

" #
€hþ C_hþ

Kb þ Kd �Kd

�Kd Kd

" #
hþ

hðdyÞ

�hðdyÞ

 !
¼

M þ KbbAm cosOt

�M

� �
, (4)

h ¼ �Kddyf ðdyÞ; f ðdyÞ ¼
0; dyX0;

1; dyo0:

(
(5)

Let U be the orthonormalized modal matrix of the linear undamped system. Letting h ¼ Uq, one obtains the
decoupled form with modal coordinates q as

€qi þ 2BiOi _qi þ O2
i qi þHiðdyÞ ¼Mi þ ~Bi cosOt; i ¼ 1; 2, (6)

where Oi are the linear undamped natural frequencies of Eq. (4), HiðdyÞ ¼ gihðdyÞ with gi ¼ u1i � u2i and
dy ¼ g1q1 þ g2q2, Mi ¼ giM and ~Bi ¼ u1iKbbAm.

The separation function f ðdyÞ in Eq. (5) is expanded as a Fourier series. To be consistent with numerical
results in Ref. [1], where the response is periodic at the excitation frequency, O is the fundamental frequency of
f ðdyÞ, that is,

f ¼ f̂ 0 þ
X1
k¼1

f̂ ke
jkOt þ c.c.

 !
, (7)

where c.c. denotes complex conjugate. To introduce a perturbation parameter, let � be the fraction of the
response period, T, where the pulley and shaft are disengaged. This assumption and another that only a single
disengagement occurs per cycle lead to Fourier coefficients f̂ k; kX0, that are all order � (demonstrated later).
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Therefore, one can write Eq. (7) as

f ¼ � ~f 0 þ
X1
k¼1

~f ke
jkOt þ c.c.

 !" #
¼ � ~f ,

where ~f k ¼ f̂ k=� ¼ Oð1Þ.
The quantities t0 ¼ t and tn ¼ �nt; nX1 are fast and slow times, respectively. The differential operators and

the response are expanded as

d

dt
¼ D0 þ �D1 þ �

2D2 þOð�3Þ;
d2

dt2
¼ D2

0 þ 2�D0D1 þ �
2ðD2

1 þ 2D0D2Þ þOð�3Þ, (8)

qi ¼ qi0ðt0; t1; t2Þ þ �qi1ðt0; t1; t2Þ þ �
2qi2ðt0; t1; t2Þ þOð�3Þ. (9)

Considering the second primary resonance as an example, the excitation frequency is O ¼ O2 þ �s,
where s is a detuning parameter. Internal resonance is not considered. The dynamic excitation and
damping are specified as Oð�Þ according to ~Bi ¼ �Bi and Bioi ¼ �mi. Substitution of Eq. (8) and (9) into Eq. (6)
gives

D2
0qi0 þ O2

i qi0 ¼Mi, (10)

D2
0qi1 þ O2

i qi1 ¼ �2miD0qi0 � 2D0D1qi0 �Hi1 þ Bi cosOt0, (11)

D2
0qi2 þ o2

i qi2 ¼ �2miD1qi0 � 2miD0qi1 � 2D0D1qi1 �D2
1qi0 � 2D0D2qi0 �Hi2, (12)

for i ¼ 1; 2, and where Hi1 and Hi2 include the �1, �2 order terms in Hi, respectively.

3.1. First-order approximation

The leading order approximation from Eq. (10) is

qi0ðt0; t1; t2Þ ¼ mi þ ½Aiðt1; t2Þe
jOi t0 þ c.c.�, (13)

where Aiðt1; t2Þ is the unknown amplitude and mi ¼Mi=O2
i . The solvability conditions generated from Eq. (11)

are

2jO1D1A1 ¼ ð�2m1jO1 þ g21Kd
~f 0ÞA1,

2jO2D1A2 ¼ �2m2jO2A2 þ g2Kd ½g2A2
~f 0 þ ðg1m1 þ g2m2Þ

~f 1e
jst1 þ g2Ā2

~f 2e
j2st1 � þ b2e

jst1 , (14)

with bi ¼ Bi=2. The overbar denotes complex conjugate. At the steady state, A1! 0 as t1!1 from the first
equation (14). This trivial solution guarantees the response has the fundamental frequency O � O2 according
to dy ¼ g1q10 þ g2q20 þOð�Þ. Now one can take

Aiðt1; t2Þ ¼ aiðt1; t2Þe
jbiðt1;t2Þ=2; i ¼ 1; 2 (15)

and write q20 as the real form q20 ¼ a2 cosðO2t0 þ b2Þ þm2. Because

dy � g2½a2 cosðO2t0 þ b2Þ þm2� þ g1m1, (16)

the Fourier coefficients of f ðdyÞ are

f̂ 0 ¼
O
2p

Z 2p=O

0

f ðdyÞdt0 ¼
f¼O2t0þb2 1

2p

Z 2p

0

f ðdyÞdf,

f̂ k ¼
1

2p
ejkðb2�st1Þ

Z 2p

0

f ðdyÞe�jkf df. (17)

In Eq. (17), t1 varies slowly compared to t0 and is considered as a constant in the integrals. To evaluate
the integrals in Eq. (17), identification of the region where dyo0 (giving f ðdyÞ ¼ 1 from Eq. (5)) is needed (see
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Fig. 2. (a) The integration intervals for Eqs. (17)–(19) and separation function f ðdyÞ ( ) as g2o0. (b) Magnitudes of Fourier coefficients

of the separation function f vary with the response amplitude a2 for M ¼ 0:0127. j f 0j ( ), jw1j ( ), jw2j ( ), jw3j ( ).
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Fig. 2(a)). The critical phases f ¼ k1;k2 are obtained from dy ¼ 0 as

cosfjf¼k1;k2 ¼ �
ðg1m1 þ g2m2Þ

g2a2
¼ �
ðg21=O

2
1 þ g22=O

2
2ÞM

g2a2
¼ x. (18)

Here the case of g2o0 is discussed (g240 generates the same results). The integration interval is
½0;k1� [ ½k2; 2p�, where k1 ¼ cos�1x and k2 ¼ 2p� cos�1x. For x41 there is no separation and the pulley
and shaft are always engaged. In this case, f ðdyÞ ¼ 0 and the system operates linearly. On the other hand,
xo� 1 implies the pulley and shaft are disengaged for the entire cycle and f ðdyÞ ¼ 1. Further expansion of
Eq. (17) gives

f̂ 0 ¼ k1=p; f̂ k ¼ wke
jkðb2�st1Þ; wk ¼ sin kk1=kp for kX1. (19)

For a given belt stiffness Kb and wrap spring stiffness Kd , the preload M affects the separation for a given
amplitude a2. A positive preload acts against separation and promotes power transmission, while negative
preload promotes separation. For the parameters in Table 1, g2o0 and, according to Eq. (18), xX0 for MX0.
Therefore, for any vibration amplitude where disengagement occurs, 0ok1pp=2. This is consistent with the
prior assumption that k1=p is small. Also, f̂ 0 2 ½0; 0:5�. The mean value j f̂ 0j of the separation function f is
greater than any harmonic amplitude jwkj because jwkj ¼ j sin kk1=kpjpjk1=pj ¼ j f̂ 0j (Fig. 2(b)). All these
validate the earlier stipulation that f̂ 0; f̂ k ¼ Oð�Þ. In the following, let ~wk ¼ wk=�.

Separation of the real and imaginary parts of Eq. (14) yields

O1D1a1 ¼ �O1m1a1; �O1a1D1b1 ¼
1
2
g21Kd

~f 0a1, (20)

O2D1a2 ¼ �O2m2a2 þ b2 sin l,

O2a2D1l ¼ O2a2sþ g2Kd ½
1
2
g2a2

~f 0 þ ðg1m1 þ g2m2Þ~w1 þ
1
2
g2a2 ~w2� þ b2 cos l, (21)

where l ¼ st1 � b2. Considering the steady-state motion where D1ð�Þ ¼ 0, the frequency–response relation
from Eqs. (20) and (21) is a1 ¼ 0 and

s ¼ �R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2

O2
2a2

2

� m22

s
; R ¼

g2Kd

O2

1

2
g2 ~f 0 þ ðg1m1 þ g2m2Þ

~w1
a2
þ

1

2
g2 ~w2

� �
. (22)
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3.2. Second-order approximation

To seek second-order approximations, the reconstitution procedure [10–13] is adopted. After eliminating
secular terms, the particular solutions qi1ðtÞ of Eq. (11) are obtained. Substitution of qi1ðtÞ into Eq. (12) and
collection of the secular terms of Eq. (12) lead to the solvability conditions

�2jO1D2A1 �D2
1A1 � 2m1D1A1 þ I1A1 ¼ 0, (23)

�2jO2D2A2 �D2
1A2 � 2m2D1A2 þ I1 ¼ 0, (24)

where I1 ¼ I1ð ~f 0; ~wkÞ and I2 ¼ I2ð ~f 0; ~wk;A2;sÞ are collected from Hi2 in Eq. (12). D2
1Ai in Eqs. (23) and (24) are

determined by differentiating Eq. (14) with respect to t1. Substitution of Eq. (15) into Eqs. (23) and (24) and
separation of their real and imaginary parts yield

O1D2a1 ¼ �
Kdg21
2O1

m1Z0a2
1; �O1a1D2b1 ¼

1

2
a1 m21 þ

K2
dg

4
1
~f 2
0

O2
1

� I1

 !
, (25)

O2D2a2 ¼ r1 þ r11 sin lþ r12 cos l; O2a2D2l ¼ r2 þ r21 sin lþ r22 cos l. (26)

Zk; kX0 are determined by differentiating the Fourier coefficients ~f 0, ~wk with respect to t1 as D1
~f 0 ¼ Z0D1a2

and D1 ~wk ¼ ZkD1a2 for kX1, where

Z0 ¼
x

�2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p ; Zk ¼

x cosðk cos�1xÞ

�pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p ; k ¼ 1; 2; . . . (27)

for jxjo1. When jxjX1, Zk ¼ 0. r1i and r2i consist of the coefficients of sin l and cos l, respectively. ri is the
collection of all terms except those with sin l and cos l as coefficients. For steady-state motion,

daiðt1; t2Þ

dt
¼ �D1ai þ �

2D2ai þOð�3Þ ¼ 0,

dbiðt1; t2Þ

dt
¼ �D1bi þ �

2D2bi þOð�3Þ ¼ 0. (28)

Therefore, by combining Eq. (20) with Eq. (25), and Eq. (21) with Eq. (26), the steady-state equations are

��m1a1 � �
2 Kdg21m1Z0a2

1

2O2
1

þOð�3Þ ¼ 0,

�
1

2O1
�Kdg21 ~f 0 þ �

2 m21 þ
K2

dg
4
1
~f 2
0

O2
1

� I1

 !" #
þOð�3Þ ¼ 0, (29)

1

O2
½�ð�O2m2a2 þ b2 sin lÞ þ �2ðr1 þ r11 sin lþ r12 cos lÞ� þOð�3Þ ¼ 0,

�

O2a2
fO2a2sþ g2Kd ½g2a2

~f 0 þ 2ðg1m1 þ g2m2Þ~w1� þ b2 cos lg þ
�2

O2a2
ðr2 þ r21 sin lþ r22 cos lÞ þOð�3Þ ¼ 0.

(30)

Clearly, a1 ¼ 0 is a solution of Eq. (29), which implies the first mode is not excited at all. By ignoring Oð�3Þ
terms, Eq. (30) is rewritten as

�

O2
ðY 1 þ Y 11 sin lþ Y 12 cos lÞ ¼ 0;

�

O2a2
ðY 2 þ Y 21 sin lþ Y 22 cos lÞ ¼ 0,

Y 1 ¼ �O2m2a2 þ �r1; Y 2 ¼ O2a2sþ g2Kd ½g2a2
~f 0 þ 2ðg1m1 þ g2m2Þ~w1� þ �r2,

Y 11 ¼ b2 þ �r11; Y 12 ¼ �r12; Y 21 ¼ �r21; Y 22 ¼ b2 þ �r22. (31)
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The elimination of sin l and cos l by using common algebraic manipulations and trigonometric identities
yields a polynomial in s. For chosen amplitude a2, one finds the roots of the polynomial. Consequently, the
frequency–response relation analogous to Eq. (22) but at a higher order is generated.

4. Results and discussions

The first-order approximation from Eq. (22) is shown in Fig. 3 for parameters given in Table 1. To
implement the stability analysis of the steady-state motions at ða20; l0Þ from Eq. (21), a small variation
v ¼ fa; WgT near a steady state is introduced as

a2 ¼ a20 þ a; l ¼ l0 þ W. (32)

Substitution of Eq. (32) into Eq. (21) yields D1v ¼ JvþOðvÞ, where J is the Jacobian matrix consisting of the
first-order derivatives with respect to ða; WÞ evaluated at ða20; l0Þ. The real parts of the eigenvalues of J

determine the stability at steady state ða20; l0Þ. One can prove that the arc between the turning points P1 and
P2 is unstable (see Fig. 3) [9]. Other than this arc, the solutions are stable.

In comparison with the results yielded by numerical integration and multi-term harmonic balance with arc-
length continuation, the perturbation approximation generates lower maximum amplitude with less softening
nonlinearity. According to Eq. (22), the maximum amplitude is determined by

a2 ¼ jb2=O2m2j, (33)

where b2 ¼ u12KbbAm=2�. This is identical to the maximum amplitude of the linear system. The terms outside
the square root in Eq. (22), �R, give the backbone curve. The backbone is affected only by the mean value and
the first two harmonics of the separation function. These two issues are limitations of the first-order solution.

The transition frequencies where the disengagement begins and ends can be determined through the
backbone terms �R in Eq. (22). For the linear case, ~f 0, ~wk in R are all zero. The transition frequencies occur
when ~f 0, ~wk start to be non-zero, which corresponds to a maximum amplitude acr above which the system
behaves nonlinearly (shown in Fig. 2(b)). For the nominal case, Ocr � 6:24; 7:38, where points P1 and P7 are
located correspondingly in Fig. 3. These values are consistent with the numerical results and those from
analytical single-term harmonic balance.

The second-order approximation somewhat improves the amplitude and softening nonlinearity of the
resonant peak in Fig. 3. Determination of the Fourier coefficients (17) and (19) is the same as for the first-
order case, which limits the improvement from a second-order approximation. Corresponding to the points P3

and P5 in Fig. 3, where the maximum amplitude of the first-order approximation is a2 ¼ 4:3� 10�5 (rms of dy
x 10-3

HB and NI

P2

P3
P4P5

P6

P1
P7

2nd order approx.

1st order approx.

Linear 2-dofR
M

S
 o

f δ
θ

Frequency Ω
3 4 5 6 7 8 9

1.6

1.2

0.8

0.4

0

Fig. 3. The rms of dy at the 2nd primary resonance yielded by the method of multiple scales, multi-term harmonic balance (HB) and

numerical integration (NI) for the parameters in Table 1. Stable ( ); unstable ( ).
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is 9:64� 10�4), the time histories of the separation function f in Eq. (5) are developed in Fig. 4. The smoothing
function f g in Eq. (3) is used for multi-term harmonic balance, while a four-term Fourier series of f is used for
the analytical approximation. Note that the point P4 with a2 ¼ 4:3� 10�5 on the second-order branch in Fig.
3 has a similar shape of time history for f as P3, although a phase difference exists. Apparently, the prediction
of the separation (when f � 1) from the method of multiple scales is poorer than that from multi-term
harmonic balance where half-period of the disengagement is shown. It is hard for the procedures (16)–(19) to
determine half-time separation (f̂ 0 ¼ 0:5 only when M ¼ 0). When the amplitude is large, the large separation
resulting from the nominal parameters according to the numerical solutions violates the assumption of small-
time fraction of a period where the pulley and shaft are disengaged.

4.1. First primary resonance

By considering the first primary resonance O ¼ O1 þ �s and following the aforementioned perturbation
procedures and assumptions, one can obtain an analytical approximation for the first primary resonance. On
the frequency–response curve, the maximum amplitude of approximation is the same as the linear solution,
but the peak bends slightly to the left and all solutions are stable. In contrast, the numerical results in Ref. [1]
form a complicated bifurcation diagram with alternate stable and unstable branches and the amplitude is
distinguished markedly from the linear one. There are several reasons that the first primary resonance
approximations are poor. First, the small separation assumption is not appropriate based on numerical
results. Second, around the first primary resonance, not only the first mode but the second mode is excited.
According to the frequency spectrum in Ref. [1], the highest spike occurs at the excitation frequency O � O1

and comparably high spikes occur around O2 as well. Through the perturbation procedures, the first primary
resonance does not show second-mode participation (a2! 0 as t!1). Third, the harmonic resonance
assumption cannot capture multiple disengagements or higher harmonic components. The numerical results
indicate that near the first primary resonance, for a given excitation frequency O, the response not only
includes the fundamental frequency O but frequency components at 4O, 5O or 6O with high amplitudes, where
the multiple of O depends on the lobe location [1].

4.2. Impact of preload on the system dynamics

Preload M is an important design parameter. Positive preload is a practical requirement that guarantees the
desired power transmission from the pulley to the accessory. The higher the preload is, the less disengagement
occurs during a cycle.
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We investigate the impact of the preload on the second primary resonance. If all the Fourier coefficients are
zero, i.e., f ðdyÞ ¼ 0, the system response is linear. Given the linear amplitude according to Eq. (33),
a2 ¼ 4:3� 10�5, the Fourier coefficient curves from Eq. (19) with varying preload are obtained, which shows
that MX0:0377 prevents disengagement. The critical preload can be analytically determined by setting f̂ k ¼ 0
in Eq. (19), which causes cos k1 ¼ 1, and from Eq. (18):

Mcr ¼ �
g2a2

ðg21=O
2
1 þ g22=O

2
2Þ
. (34)

Eqs. (33) and (34) imply that, for the given system, any set of excitation amplitude and damping ratio admits a
critical preload beyond which the system behaves linearly at the second primary resonance. If Mp0, the
numerical methods cannot yield steady state periodic solutions, while the perturbation procedure is not
applicable because disengagement would be the leading motion between the pulley and shaft and this violates
the basic assumptions.

Fig. 5 illustrates that large positive preload weakens the softening nonlinearity, and the perturbation
method predicts good approximations. In contrast, low preload, for example, M ¼ 0:0127 in Fig. 3, causes
strong softening nonlinearity and the perturbation approximations are poorer. For MX0:0377, the response
overlaps the linear solution curve. Fig. 6 compares the time histories and the associated spectra of the relative
displacements at points P6 (in Fig. 3) and P8 (in Fig. 5) from harmonic balance. The fraction of the period
where the pulley and shaft are disengaged is not small for P6 ðM ¼ 0:0127Þ. In addition, the second harmonic
of the response in Fig. 6(d) is not small, which implies the assumption of harmonic is not practical. On the
other hand, the time history and spectrum of the response when M ¼ 0:0277 at P8 validates those
assumptions, and perturbation is effective.
4.3. Impact of damping on the system dynamics

According to Eq. (22), the damping ratio does not influence the backbone curve. From Eq. (33), however, it
does impact the response amplitude. When increasing the damping ratio B (or m), the two branches from Eq.
(22) or from Eq. (31) close at a lower amplitude a2. For low amplitude, the backbones of the numerical results
and the approximations deviate only slightly, and the disengagement fraction of a period from harmonic
balance is comparably small. In this case, perturbation generates good approximations. Fig. 7 verifies this
claim by setting B ¼ 5%.
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5. Summary and conclusions

A classical perturbation technique, the method of multiple scales, is employed to approximate the steady-
state periodic solutions of a two-pulley belt system with clearance-type nonlinearity. The discontinuous
separation function is expanded as a Fourier series in the perturbation analysis. For given amplitude, the
Fourier coefficients of the separation function can be evaluated, and the closed-form frequency–response
relation is determined at the first order. For the second-order approximation, the frequency–response relation
is an implicit expression of a fourth-order polynomial.

The preload determines the softening level of the nonlinearity. Larger preload induces less disengagement,
hence, less softening. In this case, the perturbation method generates good approximations. In contrast, lower
preload results in a large disengagement fraction of a cycle, and therefore, greater softening deformation of the
resonant peak. This degrades the small disengagement assumption and the perturbation approximations,
including the amplitude and the backbone, deviate from the numerical solutions.
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